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/4 CRISP RELATIONS,
L

" [n this section, we review crisp relations as a prelude to fuzz

| petween sets is built on the Cartesian product operator of se

ts.
!

6.4.1 értesian Product)

1’ @e Cartesian product of two sets A and B denoted b

that the first element in the pair belongs to A and the second element belongs to B.

ie. AX B = {(a,b)/a€ A, be B)

. fA#Band A and B are non-empty then A x B # B x A.

The Cartesian product could be extended to n number of sets

n
A = {(a).ay.a5,...,a,)/a, € A, foreveryi=1,2,...,n)
i=1

- Observe thy X A
=1

n
XAl=TA|
i i=)

; E"lmph

Given

.

A, = {a, b}). Ay = (1,2}, Ay = {a).

y relations. The concept of relations

Y A x B is the set of all ordered pairs such

(6.45)

(6.46)
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-"\\.1
5| = IAII |‘43|
il A A= (@ 1. @), @2, 0, (b 1, @), (b2, )}
AI X A:‘- o B * -

Al - 1Al
MnxAzXA3|=4=|A1| 4, - | 3|/,

-

6.4.2 Other Crisp Relations

on among the
oduct X X and is indicative of an association or relati g tuple ey
Cartesian produ

for n =

For n = 2, the re]atlon R(X,, Xp) is termed as a bmarydre(l)at;zn 3, the
= s

termed ternary; for n = 4, quarternary; for n = 5, tqm::}:z;yna:ry e, SR "
If the universe of discourse or sets l:;:rf: flmcl tion R(X, 1) where X = G e a g,
re a k] »e a
nal relation matrix. Thus, for a binary »

v le; ns;o Ym}, the relation matrix R is a two dimensional matrix where X represents‘

1 Y2s-s ¥Ym

he € oy,
Y represents the columns and R (i, D=1if (x;,y) eR and R(,j) = 0 if (x,-,y,-)eR

relauon 1

Example

Given X = (1,2, 3, 4},

(LD(1,2)(1,3)(1,4)(2,1)(2,2)(2, 3)(2,4)
K (3,1)(3,2)(3,3)(3,4)(4,1)(4, 2)(4,3)(4, 4)}
Let the relation R be defined as
R={(xy/y = x+1, x, yEX}
={(1,2)(2,3)(3, 4))

The relation matrix R is given by

[
(o]

R =

©c o o ©
= R
-0 O £

1
2
3
4

S © = O W

. (6.4.3 Operations on Relations

Given two relations R and § defined on X x y and representeqd By relatiog -
operations are supported by R and §
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Ru S(x
W) = max (R
A S Vi ) (647
(10"'. I~ kol
RAS(x.Y) = mi
. (x,)) = min (R(x,y), §(x,y)) w
. 1 ‘ )
Fﬂt‘nf' }‘ -
| R(x.y) = 1-R(x,y)
! 6.49)
tion of relations: RoS (549)
4 relation On X, Y and S to be a relation on ¥, Z then Ro S is a composition of

\Rw© bed ™
Y, Z Jefined as

M
(D DEXXZ, Fyel such that ()R and (1€ s) (650

RS =

on form of the composition relation is the max-min composition

emin composition:
s of the relation R and S, the max-min composition is defined as

the relation matrice

T=RoS
T(x,2) = ma})f(min(R(x,y),S(y,z))) (651)
Y€
pample
Let R, S be defined on the sets {1, 3,9} % (1,9, 5)
y=x+2} & (G ) |2 <Y)

R:{(x |

R={(1.3G §={(LHLHG 5))

The relation matrices are
1 33

1. 35
ifo, 1 1
S:3001
50 0 0

ifo 10
r:3l0 0 1
50 0 0

Mg _
-ng max-min composition

13 3

1fo 0 1

Ros=3000
5000
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RoSW, 1= max{min (0, 0), min(1, 0), min(0, 0)}

since
— max (0, 0, 0) = 0.
"RoS(1,3)= max{0, 0, 0} =0
RoS(1,5)= max{0, 1, 0} = L.

Similarly, RoS(3, 1)=0.
RoS(3,3)=R°5(3,5)= RoS(5,1)=R8(5,3) =R°S(5‘S)
R oS from the relation matrix is il )1 y
1 3 5
1/10 0 1
an, SoR=3[0 0 0
50 0 0

6.5 FUZZY RELATIONS

Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets Xis Xa,eooy X, where gy
n-tuples (x;, X»,..., x,) may have varying degrees of membership within the relation. T

membership values indicate the strength of the relation between the tuples.

Example
Let R be the fuzzy relation between two sets X, and X, where X, is the set of diseases i

X, is the set of symptoms.
X, = {typhoid, viral fever, common cold}

X, = {running nose, high temperature, shivering)

The fuzzy relation R may be defined as

Running High Shivering
nose temperature
Typhoid 0.1 0.9 0.8
Viral fever 0.2 0.9 0.7
Common cold 0.9 0.4 0.6>

6.5.1 Fuzzy Cartesian Product

w ; , ?
i ~ - . ; i
fuzzy relation R is given by
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R=Ax§ w

CXxy

s 11 membership function Biven by (6.52)

(6.53)
plt‘

1. 02), (x2, 0.7), (x3,04)) and § -
2 [(x1r W& = {(y,,05
|\cr\.~n‘s of discourse X = {x}, x;, x3) and y = l)lr.. " (92 06) be two fuzzy sets defined on

: o Y1) respectively, g
ing oul of the fuzzy Cartesian product A B is given by Y. Then the fuzzy relation &

h oy
% 102 02
R=AxB=x, |05 06

X3 0.4 04

R(xy,3) = min (15(x,), t5(3)) = min(0.2,0.5) = 0.2
R(x,y,) =min(0.2,0.6) = 02 /
R(x,,y;) =min(0.7,0.5)=0.5
R(x5,y,) =min(0.7,0.6) =0.6
R(x,y,) =min(0.4,0.5) =0.4
R(x3,y,) =min(0.4,0.6) = 0.4

52 Operations on Fuzzy Relations

¢ R and § be fuzzy relations on X x Y.

Union

(6.54)
Pp5(x,y) = max (Ug(x ) Hs(x))
FRu
Higas(xY) = min (ug(x.y) Hs(6)
T (6.56)

pkc(x!y) = l-ﬁﬁ(xoy)

Composition of relations

The definition is similar to that of crisp relation. S
and § is a fuzzy relation defined on Y x Z, then

fuzzy relation defined on X x Y,

R isa
u’gpo}e is a fuzzy relation on X x Z. The fuzzy
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(x,z) = max (min(Uz(x,y), Us(y,2))) \
ﬂﬁﬂg b b 'VEY

L

Example
X={(x,xnx) Y={y. 0l Z= (z1s 220 23) {
2 &
nh » |
x10.5 0.1
0.2 0.9
Let R be a fuzzy relation ¥y
x;/0.8 0.6
4 L g
3 06 04 0.7
Let § bea fuzzy relation N
»[05 08 0.9

Then R- §, by max-min composition yields,
Q4 0 g
X105 04 05
RoS= X, 0.5 0.8 0.9
X106 0.6 0.7
Hio5(x1,2;) = max (min (0.5, 0.6), min (01 05))
=max (0.5, 0.1) -
=05. ‘
Hpos(X1,25) = max (min (0.5, 0.4), min (01 0.8))

=Mmax (0.4, 0.1)

=04
Similarly,

Hro5(X1,23) = max (05,01) =05
Hios(X3,2)) = may 02,05) =05
Hios(%3,2;) = max (02,08 =08
Hros(x3,23) = Max (0.2, 0.9) = 0.9
Hros(43,21) = max (0.6, 0.5) = 0.6
Hros(X3,23) = may (0.4, 0.6) = 0.6

Ho5(X3,23) = max (0.7, 0.6) = 0.7
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et P = (P, P,, Py, P4} of four varieties of

» .\hscnses affecting the plants and § = { paddy plants, set D = {D,, D,, Dy, D,) of

S1. 83, §3, 54} be the common symptoms of the

> be @ relationon P x D and § be 3 relation on D x §

e !
. ’()Dé D, D, D, S§ 85 5 S
6 06 i [ /
o 09 08 D,[0.1 02 0.7 09
R = P|01 02 09 08 S=Dj1 1 04 06
P,|09 03 04 08 D0 0 05 09
P,|09 08 0.1 02] D,09 1 08 02

in the sssociation of the plants with the different symptoms of the diseases using max-min
position.

fion

obtain the association of the plants with the symptoms, R o § which is a relation on the sets P
§is to be computed. '

Using max-min composition,

S, S & &
pf08 08 08 09]
RoS= R|08 08 08 09
pl08 08 08 09
P08 08 0.7 09

e Fuzzy set theory is an effective tool to tackle the problem of uncertainty.
o In crisp logic, an event can take on only two values, either a 1 or 0 depending on
whether its occurrence is trué or false respectively. However, in fuzzy logic, the event
may take a range of values between 0 and 1.
dy of fuzzy sets. The basic concepts include

o Crisp sets are fundamental to the stu
universal set, membership, cardinality of a set, family of sets, Venn diagrams, null
per set. The basic operations on crisp sets

singleton set, power set, subset, and su
union, intersection, complement, and difference. A set of properties are satisfied by

sets. Also, the concept of partition and covering result in the two important rules,
rule of addition and principle of inclusion and exclusion.

o Fuzzy sets support a flexible sense of membership and is defined to be the pair (x,
where p;(x) could be discrete Of could be described by a continuous functi
mcm_bership functions could be triangular, trapezoidal, curved or its variations.




. igm. N oe : . :
- pputational paradigm. Not only does symboic logic help in the description of events in the
tol world but has also turned out to be an effecti

ve tool for inferring or deducing information
 given set of facts.) |
m Just as mathematical sets have been classifi

. ed into crisp sets and fuzzy sets (Refer Chapter
qglc can also be broadly viewed as crisp logi 1

tc and fuzzy logic) Just as CTisp sets survive on a
f);tac membership (0/1) and fuzzy sets on 3 mult )

2state truth value (True/False) and fuzzy logij
aTr;ejpart]y False and so on.)

1 We now briefly discuss crisp logic as a prelude to fuzzy logic.
11 GRISP LOGIC)

@nsidcr the statements “Water boils at 90°C™ and “Sky is blue”. An agreement or disagreement
with these statements is indicated by a “True” or “False” value accorded to the statements, While
the first statement takes on a value Jfalse, the second takes on a value true.

Thus, {;talcment which is either ‘True’ or ‘False’ but not both is called a proposition. A
proposition is indicated by upper case letters such as P, Q. R and so on.

Example:  P: Water boils at 90°C.
Q: Sky is blue.
dre propositions.

A simple proposition is also known as an atom. Proposiiiqps alone are insufficicnt to
present phenomena in the real world. In order to represent complex information, one has to
build a'E'EciueEce of propositions linked using Connectives or Operators. Propositional logic
®cognizes five major operators as shown in Table 7.1.

Table 7.1 Propositional logic connectives

\
%mncﬂive Usage Description .
: n and PAQ Pand Q are true. N\
. or PvQ Either P or Qs true. ) '\
o - not ~Por- P P is not true. TR A \
g implication Po 0 P implies Q is tme.. _ )
: \\\:ﬁ“ equality P=0Q P and Q are equal (in truth values) is lru\cv, "»
7 | 187




i

g, Gt AT ST—
m‘ oy N ey’ OpErators requirin m‘cqfi'”h
5, AN ¢ ‘binary  Op ’ tivo g \

Observe that A ¥ ”s'in!llc prnpﬂﬁi“““' A and v opcrullnns.grc fefe .ih.% _

requiring 8 ‘l s case of = operator, the propositiop N
espectively: n o and the one occurring after is cajjq d g Ting l:'%
as the {th'(‘."dt ",I' the logical connectives are eXplaineg 8 e ¢, y
¢ meaning ¢ a8 interpretations, each of which eva'uausnng a:,q%

-f“l‘lrk.“', ’ i

| = ar

sanary” operator
and disjunction !

is called
symbol 18 calle e
(The semantics (

‘ n
e comprises rows knowft illustrates the truth tab] "y
truth t.lhlf U\"‘:&' of truth vnlucﬁ rable 7.2 ill € for the five logicq
for the given s : ¢
\ Table 7.2 Truth able for the connectives A, v, ~ = 0"“‘“
_./ - \
5 g fe0 P¥8 T  TFso g%
___’,___———-—/ \
- T T T
v g F T ,!; F P
F F F ¥ J T
F T F 4 : : F
T: True, F: False R
. 1t1 1 n s .
g\‘mgim formula comprising n proposm'ons‘ will .hal:/e 2 Interpretationg in i m
formula which has all its interpretations recording true 1S KNOWn as a tautolog, anq f, n:

records false for all its interpretations is known as contradiction.

|Example 7.1
Obtain a truth table for the formula (P v Q) = (~P). Is it a tautology?

Solution
The truth table for the given formula is

F T T . -
T T T E 5
F F F T ol

No, it is not a tautology since all interpretations do not record “True’ in its last column.\

J
(Example7.2
s (P=0Q) A (0= P) = (P = 0) a tautology?
Solution
e —— ‘_/
» A: B:
2 22 Psoagsrp pog 422
IR F B
S S U T
e 1 .

Yes, the given formula is a lHUtolog;,:"-




o that P = D=GPvQ
ho
jusio™ .
uth table for the given formy), is
The

QW

B:-PvQ A=

-

P
i T
F
T.. F o T: d
F F T T T £
LI T T T :"
i o' VL L .
Since the last column yields ‘Trye’ for all Interpretations "

chown to be equivalent to (~P v Q), a f,

. since (P = Q) is
oy ! by il ormula devoid of ‘=’ connective. This equivalence can
terefore be utilised to eliminate ‘=’ jp logical formulae.
It is useful to view the ‘=’ operator fr

Om a set oriented
discourse and A, B are sets defined in X, then

perspective.éf X is the universe of
element x € X belonging to A or B. That is,

Propositions P and Q could be defined based on an

P.:xe A

Q:xe B) (7.1)
Jflere, P,Qaretrueifx e Aand x € B respectively, and ~P,
)

~Qaretrueifxg Aandx ¢ B
respectively. In such a background, P = Q which is equivalent to (~ P v Q) could be interpreted
as

P=>Q):x¢A or xeB (7.2)

G—Iowever, if the ‘=’ connective deals with two different universes of discourse, that is,

AchndBc Y where X a

nd Y are two universes of discourse then the ‘=’ connective is
'epresented by the relation R such that

R=(AxB)U(A xY) (1.3)
is linguisti IF A THEN B. The compound

Case, P = Q is linguistically referred to as . |

= Q) v (~P = S) linguistically referred to as IF A THEN B ELSE C is equivalent

In such a
Proposition (p
o

IF A THEN B (P = Q)
IF ~A THEN C (~P = §) L
wh

"*P. 0, anq g are defined by sets A, B, C, A c X, and B, C Y)

1. :
1 Laws of propositional Logic

B e g

ion 6.2.2. exhibit properties which help in their simplificaunor
n 6.2.2.
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their simplification. Give

(i) Commutativity

(i) Associativity

(ili) Distributivity

(iv) Identity

(v) Negation

(Vl) id, empotence

(vii) Absorption

(viii) De Morgan’s laws

(ix) Involution

Verify De Morgan’s laws.

(a) ""(PVQ): (""P/\ __Q)
® ~Pr0=(-Pv-g

N ic also supports the following laws which
imilarly, propositional lﬁg}‘: Z' R to be the propositions,

Can be %

(!
Y
%

(PvQ)=(QvP)
(PAQ@Q)=(QAP)

PvQ vVR=Pv(QVR)
PAQAR=PA(QAR

PvOAR=(PAR)V(QAR
PAQVR=(PVR)A(QVR)

Pvfase=P
PATrue=P
P A False = False

P v True = True

P A ~P = False
Pv ~P = True

PvP=pP
PAP=pP r

PA(PvQ)=p
Pv(PAQ)=p i

~PvQ)=(~P A ~0Q)
~PAQ)=(~Pv ~0) al
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PvQ A:\

~Pv .
3 Fi—-“_‘—-i__;o B:. <P A ~
T . F F Q A=8B
T . F o7 F T
F » T p i T
T : T
T

Therefore, ~(Pv Q) =(~PA~Q)

T,

A '

—— - O A<PAQ) <P -0 B-Pv-p
T _—— F T

F T F T T 7 T T

ST S O S

Therefore ~(P A Q)=(~Pv ~Q)

ple 7.5
ifY(“(PAQ)ﬂR)APAQ

bwAQp:mAPAQ

=(~~(PAQ)VR)AP/\Q
(by eliminating =’ using (P => @) = -PV Q)

) v R) A paQ (by the law of involution)

=((Pr@Q
(by the law of absorptidn)

=(PrQ

Logic
ms Of premises F,

Inference in Proposition?
moke there 15

tes Or axio.

ence is a technique by which, giver 2 se :
» F,, a goal G is to be derived. For example, fromlth a iy
, ﬂ(rlld “There is smoke in th il”, the statement e hi

€d.
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(1) Modus Ponens ’ nar"ely
(i) Modus Tollens, and

In propositional logic, three rules are widely used for inferring
actg

(1) Chain rule

Modus ponens (mod pons)

Given P = Q and P to be true, Q is true.

=00
P
Q
Here, the formulae above the line are the premises and the one below :
be inferred from the premises. OW is the
80q) ""Ihit

Modus tollens
Given P = Q and ~Q to be true, ~P is true.
P=0
.’
~P

Chain rule

Given P = Q and Q => R to be true, P = R is true.
=
O=R
P=R (

Note that the chain rule is a representation of the transitivity relation with respect o
connective.

(_ /
Example 7.6

Given
i) CvD
(i) ~H= (A A~B)
() (Cv D)= ~H
(iv. AA~B)=>(RvVvYS)

Can (R v S) be inferred from the above?
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4 (i) using the rule of Modus Ponens , ~H can be inferred.
an

CvD
(CvD)=~H
~H (v)

4 (iv) using the chain rule, ~H = (R v §) can be inferred.

..) .
' ~H = (A A ~B)

(AA~B)=>(Rv )

~H=>RvS) (vi)
) and (vi) using the rule of Modus Ponens (R v S) can be inferred.
~H=((RvY)

itional logic, events are symbolised as propositions which acquire either ‘True/False’
owever. there are situations in the real world where propositional logic falls short of its
n. For example, consider the following statements:

All men are mortal.
Socrates is a man.

the given statements it is possible to infer that Socrates is mortal. However, from the
s P, Q which symbolise these statements nothing can be made out. The reason being,
‘al logic lacks the ability to symbolise gquantification. Thus, in this example, the
‘All” which represents the entire class of men encompasses Socrates as well, who is
be a man. in proposition Q. Therefore, by virtue of the first proposition P, Socrates
'isnnalsu _bccomes a mortal, giving rise to the deduction Socrates is mortal. However, the
] ;: d}rectly perceivable owing to the shortcomings in propo_s*;iﬁonﬂ logic. Therefore,
‘rarfjg::' needs to bc augmented W'llh more tools to enhance 1ts. logical abilities.

by gic comprises the following apart from the connectives and propositions

Propositional logic.

{ Onstants

Vaniables
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plos (. 3 (2 plus 3 Which s s
molhcr (KnSh“a) (KriShna's moth er)
" pbserve that plus () and Mother () i“dif%lly describe
B i

5" and “Krishna's mother”
7.7

jcate logic statements for

food (x)
likes (x, y) -
‘hen the above statements are translated as

x is food.
x likes y

i) Vx (likes (Ram, x) = likes (Sita, x))

i)V x (likes (Sita, x) A likes (Ram, x)) = likes (Raj, x))
V) 3x (likes (Ram, x) A likes (Ali, x))

application of the rule of universal

qQuantifier and rule of existential quantifier can be
ved in the translations given above.

Interpretations of Predicate Logic Formula

formula in Propositional logic, depending on the truth values acquired by the propositions,

terprets the formula. But in the case of predicate logic, depending on the truth
by the predicates, the nature of the quantifiers, and the values taken by the
nctions over a domain D, the formula is interpreted.

8 acquired
s and fy

nple

et the formulae

) v, p(x)

) 3x px)

Where the domain D = {1, 2} and

p(1) p(2)
True False
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Solution : II values of x in the g, :
. ' is true for a Omain p
(i) Vxp(x)is "'”le o:cllyxlf_P y)mc two possible values for x chosep, from » Othey
Here, for x = | and x = 2,

d p(2) = false respectively, y iclds (1) tor be falae since P(x) s ot "’l‘en?;n
and p(z£) = Ial: r

is false. )
(i1) EJV ;;jr(;)tsl true only if there is atleast one value of x for which Plx) i
i) 3Ix

Here, for x = 1, p(x) is true resulting in (i1) to be true. Hence, 3, P(x)
€re, = A

true
18ty
/ Example 7.8 '

= {1, 2} and
Interpret Vx 3y P(x, y) for D = (1,
! Pl 1) FL2) P2, 1) P22

True False False True
Solution |
For x = 1, there exists a y, (y = 1) for which P(x, y), ie. (P(1,1)) is trye,
For x = 2, there exists a y, (y = 2) for which P(x, y) (P(2, 2)) is true.
Thus, for all values of x there exists a y for which P(x, y) is true.

Hence, Vx 3y P(x, y) is true. )

4 . .
{ 7.2.2 Inference in Predicate Logic

The rules of inference such as Modus Ponens, Modus Tollens and Chain ryle, and ¢
propositional logic are applicable for inferring predicate logic but not before the quan;
been appropriately eliminated (refer Chang & Lee, 1973).

Example

Given (i) All men are mortal.
(ii) Confucius is a man.
Prove: Confucius 1S mortal.

Translating the above into predicate logic statements

(1) Vx (man (x) = mortal (x))
(ii) man (Confucius)
(iii) mortal (Confucius)
Since (i) is a tautology qualified by the universg] Quantifier for x = Confucius, the 514
true, i.e.

man (Confucius) = mortal (Confucius)
= ~man (Confucijus) v morta] (Confucius)

But from (ii), man (Confucius) jg true,
‘Hence (iv) simplifies to
False v morta] (Confucius)
= mortal (Confucius)

Hence, Confucius is morta] has been proved)



